skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seyfried, Georgia S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 4, 2026
  2. Abstract Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associatedOreomunnea mexicana(Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of theITS2(fungi) and16SrRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function. 
    more » « less
  3. Sea level rise and intensifying storms cause salinization and freshwater inundation of coastal forest soils which can result in tree mortality and altered ecosystem carbon (C) cycling. However, it is not yet clear if increased salinity and inundation will affect greenhouse gas (GHG) emissions to feed back with climate change. To assess the impacts of in situ chronic and pulsed salinity on GHG fluxes from coastal forests, we made continuous measurements of carbon dioxide and methane fluxes from intact soil cores collected in 1) an upland forest dominated by loblolly pine (Pinus taeda) and a freshwater swamp dominated by baldcypress (Taxodium distichum) 2) adjacent forest stands within forest types experiencing high versus low salinization and associated tree mortality and 3) before and after pulsed salinity from a hurricane related storm surge. In lab mesocosms, all soil cores were exposed to three levels of rainwater addition to assess potential interactive effects between salinization and inundation. We found that chronic salinization and associated tree mortality decreased soil CO2 fluxes in loblolly, but not baldcypress forest with in situ soil inundation patterns potentially driving the site effect. Additionally, in an upland loblolly forest, pulsed salinity from a storm surge exhibited the potential to increase CH4 fluxes. Finally, the effect of rainwater inundation on CH4 fluxes was greater in low compared to high salinity stands suggesting that salinization may have suppressed the effects of rainwater inundation on CH4 fluxes. Overall, we show that complex interactions between biotic and abiotic conditions in stressed coastal forests can alter GHG emissions, highlighting a need for future research focused on understanding the mechanisms driving GHG fluxes from coastal forests under changing environmental conditions. 
    more » « less